\qquad
\qquad
\qquad

Sirindhorn International Institute of Technology Thammasat University

Final Examination: Semester 2 / 2015

Course Title:
ECS203 (Basic Electrical Engineering)
Instructor:
Asst. Prof. Dr.Prapun Suksompong
Date/Time (for the real exam):
May 19, 2016 / 13:30-16:30

Instructions:

$>$ This practice for the final examination has..... 10 pages (including this cover page).
> Conditions of Examination:
.............Closed book
(No dictionary, \square No calculator \square Calculator (e.g. FX-991) allowed) .Open book

This sheet must be hand-written.
Do not modify (,e.g., add/underline/highlight) content on the sheet inside the exam room. It should be submitted with the exam. (1 pt) |Other requirements are discussed in class and on the course web sitt
$>$ Read these instructions and the questions carefully.
$>$ Students are not allowed to be out of the examination room during exar Going to the restroom may result in score deduction.
$>$ Turn off all communication devices and place them with proctors or outside the test room.
$>$ Write your name, student ID, section, and seat num relean in the sp es provided on the top of this sheet. Then, write your first name and the last three digit of your ID in e spaces provided on the top of each page of your examination paper, starting from page 2 .
nation.

in the area designated by the
 The back of each page will not be graded; it c be used for calculations of problems that do not require explanation.
$>$ The examination paper is not allowed be take the examination room. Also, do not remove the staple. Violation may result in score deductio
$>$ Unless instructed othervese, ite dow all th steps that you have done to obtain your answers. - When applying fon ular state dearly which formula(s) you are applying before plugging-in numerical values.
o You may t ge any dit even when your final answer is correct without showing how you get your answer.

- Formula(s) discusse, in class can be used. However, derivation must also be provided.
$>$ When not explicit, stated/defined, all notations and definitions follow ones given in lecture.
$>$ For the calculation $\boldsymbol{\rho}$ absorbed power, if the power is actually supplied by the element, then your corresponding answer will be negative.
$>$ Units are important.
> Some points are reserved for accuracy of the answers and also for reducing answers into their simplest forms.
$>$ All sinusoid should be answered in the standard time-dependent cosine form where the amplitude is positive and the phase is between -180° and 180°.
> All phasor should be answered in standard polar form where the magnitude is positive and the phase is between -180° and 180°.
> All impedance should be answered in rectangular form.
$>$ Dr. Prapun will visit each exam room regularly. In general, there is no need to ask the proctor to call for Dr. Prapun.
> Do not cheat. Do not panic. Allocate your time wisely.

1. $(10 \mathrm{pt})$ Consider the ideal op amp circuit shown in Figure 1.

Figure 1
a. (2 pt) State two important characteristics of the ideal op amp. (What are the two rules that we can use to analyze op amp circuit?)
b. (4 pt) Find $v_{i n}$ in terms of v_{1}, v_{2}, R_{1}, and R_{2}.
c. (4 pt) Find v_{o} when

$$
\begin{gathered}
\mathrm{R}_{1}=5 \Omega, \mathrm{R}_{2}=3 \Omega, \mathrm{R}_{3}=7 \Omega, \mathrm{R}_{4}=7 \Omega, \\
\mathrm{~V}_{1}=20 \mathrm{~V}, \mathrm{~V}_{2}=12 \mathrm{~V} .
\end{gathered}
$$

\qquad ID
2. (11 pt) Consider the circuit in Figure 2 below. Assume the switch has been at position 1 for a long time and moves to position 2 at $t=0$ sec.

Figure 2
Let

$$
\mathrm{V}_{\mathrm{s} 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{s} 2}=0 \mathrm{~V}, \mathrm{R}_{1}=6 \Omega, \mathrm{R}_{2}=3 \Omega \text {, and } \mathrm{C}=10 \mathrm{~F} .
$$

a. (3 pt) Find $v\left(\mathbf{0}^{-}\right)$. Do not forget to justify your answer.
b. (1 pt) Find $v(0)$. Do not forget to justify your answer.
c. (4 pt) Find $v(t)$ for $t>0$.
d. (3 pt) Find $v(t)$ for $t>0$ if $\mathrm{V}_{\mathrm{s} 2}=\mathbf{1 0} \mathbf{V}$ instead of 0 V .
3. $(10 \mathrm{pt})$ Consider the circuit in Figure 3 below. Assume the switch has been at position 1 for a long time and moves to position 2 at $\mathbf{t}=\mathbf{5} \mathbf{~ s e c}$.

Figure 3
Let

$$
\mathrm{V}_{\mathrm{s} 1}=16 \mathrm{~V}, \mathrm{~V}_{\mathrm{s} 2}=8 \mathrm{~V}, \mathrm{R}_{1}=3 \Omega, \mathrm{R}_{2}=5 \Omega \text {, and } \mathrm{C}=8 \mathrm{~F} .
$$

a. (3 pt) Find $v(0)$.
b. (2 pt) Find $v(5)$.
c. (4 pt) Find $v(t)$.
d. $(1 \mathrm{pt})$ Evaluate $v(t)$ at $\mathrm{t}=7$.
\qquad
4. (4 pt) Simplify $x(t)=7 \cos \left(t-777^{\circ}\right)-7 \sin \left(t-77^{\circ}\right)$. (Your answer should be a time-dependent sinusoid in standard form.)
5. (4 pt) Find the sinusoid $x(t)$ which is represented by a phasor $\mathbf{X}=-7+7 j$. Assume $\omega=100 \mathrm{rad} / \mathrm{s}$. (Your answer should be a time-dependent sinusoid in standard form.)
6. (38 pt) In this question, you must use the specified techniques to solve the problem. There will be no credit given if you do not follow the instructions. As always, your score depends strongly on your explanation of your answer. If the explanation is incomplete, zero score may be given even when the final answer is correct.

Consider the circuit below.

Figure 4
Suppose

$$
\begin{gathered}
v_{s}(t)=7 \cos \left(200 t+30^{\circ}\right) \mathrm{V}, \\
\mathrm{R}_{1}=6 \Omega, \mathrm{R}_{2}=4 \Omega, \text { and } L=5 \mathrm{mH} .
\end{gathered}
$$

a. (1 pt) Find $\mathbf{V}_{\mathbf{s}}$ (which is the phasor representation of $\mathrm{v}_{\mathrm{s}}(\mathrm{t})$).
b. (2 pt) Find the impedance of the inductor.
c. (8 pt) Use mesh analysis to find all mesh currents (in the clockwise direction) in phasor form.
d. $(2 \mathrm{pt})$ Use the mesh current(s) to find the current $i_{L}(t)$ through the inductor.
e. (6 pt) Use nodal analysis to find the voltage $v_{2}(t)$ across the resistor R_{2}.
f. (4 pt) Find the voltage $v_{1}(t)$ across the resistor R_{1}.
g. (5 pt) Use source transformation(s) and/or impedance combination(s) to transform
the part of the circuit to the left of the inductor
into a phasor voltage source $\mathbf{V}_{\mathbf{A}}$ in series with an impedance $\mathbf{Z}_{\mathbf{A}}$.
h. (3 pt) Use $\mathbf{V}_{\mathbf{A}}, \mathbf{Z}_{\mathbf{A}}$, and the impedance of the inductor to find $i_{L}(t)$.
i. (1 pt) Find the instantaneous power absorbed by R_{1}
j. (1 pt) Find the average power absorbed by R_{1}
k. (2 pt) Find the average power absorbed by L

1. (3 pt) Find the average power absorbed by the voltage source.
2. $(9 \mathrm{pt})$ Consider the circuit in Figure 5 below.

Figure 5
Suppose

$$
v_{s}(t)=7 \cos \left(200 t+30^{\circ}\right) \mathrm{V},
$$

a. (4 pt) Determine the load impedance Z_{L} for maximum power transfer (to Z_{L}).
b. (3 pt) In the lab, how can you build the optimal Z_{L} which you got in part (a) from a combination of resistor/inductor/capacitor? Draw and explain your answer. Indicate the values of each component (in $\Omega / H / F$).
c. $(2 \mathrm{pt})$ Calculate the maximum power absorbed by the load Z_{L}.
8. (3 pt) What is seriously wrong with Figure 6 below. Justify your answer.

Figure 6
9. $(4 \mathrm{pt})$ Consider the circuit in Figure 7.

Figure 7

Figure 8

Assume that the switch has been in position 1 during time $t<0$. Then, during time $t \geq 0$ the switch changes its position three times: at t_{1}, t_{2}, t_{3}.
(At time t_{1}, the switch changes to position 2. At time t_{2}, the switch changes back to position 1. At time t_{3}, the switch changes again to position 2.)

Figure 8 shows the voltage $v(t)$ for time $t>0$.
\qquad

If the capacitance value C is decreased by 10%, how would the plot in Figure 8 change? Provide some explanation and sketch the plot of the new $v(t)$ directly in Figure 8. Assume the same initial voltage at time t_{1}.
10. (6 pt) Consider the op-amp circuit in Figure 9 below. All voltages are represented by their phasors.

Figure 9
d. (5 pt) Find the gain $\left|\frac{\mathbf{V}_{\text {out }}}{\mathbf{V}_{\text {in }}}\right|$ in terms of $\omega, \mathrm{R}, \mathrm{C}, \mathrm{R}_{\mathrm{p}}$.
e. (1 pt) Find the gain $\left|\frac{\mathbf{V}_{\text {out }}}{\mathbf{V}_{\text {in }}}\right|$ when $\omega=0 \mathrm{rad} / \mathrm{s}$.
11. (1 pt) Do not forget to submit your formula sheet with your final exam.

